Optimal Divisibility Conditions for Loose Hamilton Cycles in Random Hypergraphs
نویسندگان
چکیده
In the random k-uniform hypergraph H (k) n,p of order n, each possible k-tuple appears independently with probability p. A loose Hamilton cycle is a cycle of order n in which every pair of consecutive edges intersects in a single vertex. It was shown by Frieze that if p ≥ c(log n)/n2 for some absolute constant c > 0, then a.a.s. H (3) n,p contains a loose Hamilton cycle, provided that n is divisible by 4. Subsequently, Dudek and Frieze extended this result for any uniformity k ≥ 4, proving that if p ≫ (log n)/nk−1, then H n,p contains a loose Hamilton cycle, provided that n is divisible by 2(k − 1). In this paper, we improve the divisibility requirement and show that in the above results it is enough to assume that n is a multiple of k − 1, which is best possible.
منابع مشابه
Minimum vertex degree conditions for loose Hamilton cycles in 3-uniform hypergraphs
We investigate minimum vertex degree conditions for 3-uniform hypergraphs which ensure the existence of loose Hamilton cycles. A loose Hamilton cycle is a spanning cycle in which consecutive edges intersect in a single vertex. We prove that every 3-uniform n-vertex (n even) hypergraph H with minimum vertex degree δ1(H) ≥ ( 7 16 + o(1) ) ( n 2 ) contains a loose Hamilton cycle. This bound is asy...
متن کاملMinimum Vertex Degree Conditions for Loose Hamilton Cycles in 3-uniform Hypergraphs
We investigate minimum vertex degree conditions for 3-uniform hypergraphs which ensure the existence of loose Hamilton cycles. A loose Hamilton cycle is a spanning cycle in which consecutive edges intersect in a single vertex. We prove that every 3-uniform n-vertex (n even) hypergraph H with minimum vertex degree δ1(H) ≥ ( 7 16 + o(1) ) (n 2 ) contains a loose Hamilton cycle. This bound is asym...
متن کاملHamilton cycles in quasirandom hypergraphs
We show that, for a natural notion of quasirandomness in k-uniform hypergraphs, any quasirandom k-uniform hypergraph on n vertices with constant edge density and minimum vertex degree Ω(nk−1) contains a loose Hamilton cycle. We also give a construction to show that a k-uniform hypergraph satisfying these conditions need not contain a Hamilton `-cycle if k − ` divides k. The remaining values of ...
متن کاملLoose Hamilton Cycles in Random 3-Uniform Hypergraphs
In the random hypergraph H = Hn,p;3 each possible triple appears independently with probability p. A loose Hamilton cycle can be described as a sequence of edges {xi, yi, xi+1} for i = 1, 2, . . . , n/2 where x1, x2, . . . , xn/2, y1, y2, . . . , yn/2 are all distinct. We prove that there exists an absolute constant K > 0 such that if p > K logn n then lim n→∞ 4|n Pr(Hn,p;3 contains a loose Ham...
متن کاملLoose Hamilton Cycles in Random k-Uniform Hypergraphs
In the random k-uniform hypergraph Hn,p;k of order n each possible k-tuple appears independently with probability p. A loose Hamilton cycle is a cycle of order n in which every pair of adjacent edges intersects in a single vertex. We prove that if pn/ logn tends to infinity with n then lim n→∞ 2(k−1)|n Pr(Hn,p;k contains a loose Hamilton cycle) = 1.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 19 شماره
صفحات -
تاریخ انتشار 2012